首頁  >  產業/解決方案  >  新能源發電和電力電子  >  Evaluation Test of Power Conditioning System for Solar

Evaluation Test of Power Conditioning System for Solar

IS8000 Integrated Software Platform

1. Introduction
A power conditioning system (also referred to as an inverter, PCS, or power conditioner) is used to convert the DC power generated by solar modules or windmills into AC power in systems that produce renewable energy that has been introduced as a response to global environmental issues, such as a wind power generation system or solar power generation system including a mega-solar power system. This conversion efficiency is improving every year. One of the goals of the power conditioner developers is to develop ones with low conversion loss, which are highly competitive in the market.
The efficiency measurement method for power conditioning systems for photovoltaic power generation is specified in JIS C 8961 in Japan and the international standard IEC 61683. Regulations concerning efficiency measurement may differ for each country and some countries specify the methods of measuring not only the maximum efficiency but also Euro efficiency or CEC efficiency.
While maximum efficiency is the efficiency data under specific conditions where efficiency is maximized, Euro/CEC efficiency is the efficiency that is obtained by measuring the efficiencies at multiple points under light load to rated load and weighting them according to the load factor.
There are various problems in interconnection to the grid. If a large amount of output from solar power generation, wind power generation, or others are connected to the power grid and power conditioners get disconnected all at once due to the disturbance of the grid, the power quality is greatly affected. To prevent such a problem caused by simultaneous disconnection or the like, a power conditioner needs to have continuous operation performance that is the ability to continue its operation (stay connected to the grid) even when an instantaneous voltage drop occurs. The requirements for the continuous operation performance of dispersed     generators, which is necessary to ensure the power quality even during grid disturbance, are continuously developed.
Evaluation of maximum efficiency, Euro efficiency, and CEC efficiency includes a voltage fluctuation test, frequency fluctuation test, and temperature rise test. Power measurement using a power meter, checking of instantaneous waveform fluctuations using an oscilloscope, or high-speed data acquisition equipment, and temperature measurement tests are conducted around the world.