Specifications (Main unit)

For the plug-in modules specifications, see the "Bulletin DL950E-02EN".

Signal Input Section		
Type	Plug-in input unit	
Number of slots	8	
Maximum number of input channels		
	128 channels (when 16 CH temperature/voltage modules are used in all slots)	
Memory size	Standard: 1 Gpoint (up to 500 Mpoints per channel) /M1 option: 4 Gpoints (up to 2 Gpoints per channel) /M2 option: 8 Gpoints (up to 4 Gpoints per channel)	
Scope Mode Features		
Waveform Acquisition and Display		
Acquisition mode	Normal	Normal waveform acquisition
	Envelope	Holds peak values at the maximum sample rate, regardless of the time axis setting
	Averaging	Average count: 2 to 65536 (2^{n} steps), Infinite (attenuation constant: 2 to 256, $2^{\text {n }}$ steps)
Record length	Standard	odel $\begin{aligned} & 10 \mathrm{k}, 25 \mathrm{k}, 50 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2.5 \mathrm{M} \text {, } \\ & 5 \mathrm{M}, 10 \mathrm{M}, 25 \mathrm{M}(32 \mathrm{CH}), 50 \mathrm{M}(16 \mathrm{CH}), 100 \mathrm{M}(8 \mathrm{CH}) \text {, } \\ & 250 \mathrm{M}(4 \mathrm{CH}), 500 \mathrm{M}(2 \mathrm{CH}) \end{aligned}$
	/M1	10 k, 25 k, 50 k, 100 k, 250 k, 500 k, 1 M, $2.5 \mathrm{M}, 5 \mathrm{M}$, $10 \mathrm{M}, 25 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}(32 \mathrm{CH}), 250 \mathrm{M}$ (16 CH), $500 \mathrm{M}(8 \mathrm{CH}), 1 \mathrm{G}(4 \mathrm{CH}), 2 \mathrm{G}(2 \mathrm{CH})$
	/M2	10 k, 25 k, 50 k, 100 k, 250 k, 500 k, 1 M, $2.5 \mathrm{M}, 5 \mathrm{M}$, $10 \mathrm{M}, 25 \mathrm{M}, 50 \mathrm{M}, 100 \mathrm{M}, 250 \mathrm{M}$ (32 CH), $500 \mathrm{M}(16 \mathrm{CH}), 1 \mathrm{G}(8 \mathrm{CH}), 2 \mathrm{G}(4 \mathrm{CH}), 4 \mathrm{G}(2 \mathrm{CH})$
Sample rate	Can be set up to the module's maximum sample rate for each channel (there are limitations based on the record length)	
Selectable time scale range		
	$100 \mathrm{~ns} /$ div to $1 \mathrm{~s} /$ div (1-2-5 steps), $2 \mathrm{~s} / \mathrm{div}, 3 \mathrm{~s} / \mathrm{div}, 4 \mathrm{~s} / \mathrm{div}, 5 \mathrm{~s} / \mathrm{div}$, $6 \mathrm{~s} / \mathrm{div}, 10 \mathrm{~s} / \mathrm{div}, 20 \mathrm{~s} / \mathrm{div}, 30 \mathrm{~s} / \mathrm{div}$, $1 \mathrm{~min} / \mathrm{div}$ to $6 \mathrm{~min} /$ div (1 min steps), $10 \mathrm{~min} / \mathrm{div}$, $12 \mathrm{~min} / \mathrm{div}, 30 \mathrm{~min} / \mathrm{div}, 1 \mathrm{~h} / \mathrm{div}$ to $6 \mathrm{~h} / \mathrm{div}$ (1 h steps), $8 \mathrm{~h} / \mathrm{div}$, $10 \mathrm{~h} / \mathrm{div}, 12 \mathrm{~h} /$ div, 1 day/div to 5 day/div (1 day steps)	
Action performed at the end of acquisition		
	Waveform MATLAB f Image sav notification	data saving (simultaneous saving in binary, ASCII, and rmats) g, measurement result saving, mail transmission, buzzer
Event recording	Records up to 100 events using the event input terminal	
Zoom	Two windows	
Display format	1, 2, 3, 4, 5, 6, 8, 12, 16 split displays (set for each display group)	
Maximum number of displayed traces		
	Up to 64 traces for each display group	
Display interpolation	Off, sign interpolation, linear interpolation, pulse interpolation	
X-Y display	Select X and Y axes from analog input waveforms and Math waveforms, up to four traces in two windows	
Accumulation	Waveform accumulation: Infinite, 2, 4, 8, 16, 32, 64, 128	
History function	Maximum number of histories: 5000	
	Display mode: Single waveform display, all waveform display, average display	
Dual capture	Data acquisition of the same waveform is possible at two different sample rates	
Low-speed sampling	Maximum sample rate: $100 \mathrm{kS} / \mathrm{s}$ Selectable time scale range: $1 \mathrm{~s} /$ div to 5 day/div	
High-speed sampling	Maximum sample rate: Module's maximum sample rate Selectable time scale range: $100 \mathrm{~ns} /$ div to $1 \mathrm{~min} / \mathrm{div}$ Maximum record length: 50 M (/M2)	

SSD recording (/ST1)
Maximum sample rate
Depends on the number of used channels. $2 \mathrm{MS} / \mathrm{s}$ (when 1 CH is used), $200 \mathrm{kS} / \mathrm{s}$ (when 16 CH is used) maximum
Maximum record length
50 G (/M2)

Vertical and Horizontal Control Channel on/off CHn, CHn_m, RTMATHn, and MATHn can be turned on and off separately	
Vertical axis zooming	$\times 0.1$ to $\times 100$ (varies depending on the module type) By setting the scale using upper and lower limits
Vertical position setting	Waveforms can be moved in the range of ± 5 div (not possible when top and bottom scale values are set).
Linear scaling	Can be set to Ax $\times \mathrm{B}$ mode or P1-P2 mode (only for voltage, stress, and frequency)
Roll mode display	When the trigger mode is set to auto, single, or on-start, and the time axis setting is greater than or equal to $100 \mathrm{~ms} /$ div
Deskewing	$\pm 1 \mu \mathrm{~s}$ (modules with sample rates at $10 \mathrm{MS} / \mathrm{s}$ or faster)
Triggering Section Trigger mode	Auto, Auto Level, Normal, Single, Single (N), On-start

Selectable trigger level range	
	0 ± 10 div
Manual trigger	Input through dedicated keys or communication commands
Simple trigger	
Trigger source	$\mathrm{CHn}, \mathrm{CHn} _\mathrm{m}$ (specified input channel, specified bit for logic), RTMathn, external, time, line
Trigger slope	Rising, falling, both edges (rising, falling only for logic)
Clock trigger	Date (year/month/day), time (hour/minute/second), time interval (10 seconds to 24 hours)
Enhanced trigger	
Trigger source	$\mathrm{CHn}, \mathrm{CHn} _\mathrm{m}$ (specified input channel, specified bit for logic), RTMathn, external
Trigger type	A $\rightarrow \mathrm{B}(\mathrm{N})$, A Delay B, Edge on A, AND, OR, Period, Pulse Width, WaveWindow
Analysis	
Cursors	T-Y waveforms: Horizontal / Vertical / H\&V / Marker / Degree
	X-Y waveforms: Horizontal / Vertical / H\&V / Marker
	FFT waveforms: Marker / Peak
Measured parameters	of waveform parameters Analog waveform, Math PP, Amp, Max, Min, High, Low, Avg, Mid, Rms, Sdev, +Over, -Over Rise, Fall, Freq, Period, +Width, -Width, Duty, Pulse, Burst1, Burst2, Avg.Freq, AvgPeriod, Int1TY, Int2TY, Int1XY, Int2XY, Delay
	Logic waveform Freq, Period, Pulse, Duty, Avg.Freq, Delay
Statistical processing	Statistical items Max, Min, Avg, Sdv, Cnt
	Maximum number of cycles 64000
	Maximum measurement range 4 Gpoints (memory recording), 100 Mpoints (internal storage)
	Continuous statistical processing Statistical processing is performed while waveforms are acquired
	Cyclic statistical processing Automatically measures the waveform parameters once per cycle and performs statistical processing on the parameters
	History statistical processing Automatically measures the waveform parameters on the data of each history waveform and performs statistical processing on the parameters
Waveform computation	
Number of computations	
Up to 8	
Computation length	Up to 2 Mpoints (when one waveform is used), 250 kpoints (when eight waveforms are used)
User-defined math function (/G02 option)	
Operators	Equations can be created using the following operators. ABS, SQRT, LOG, EXP, NEG, SIN, COS, TAN, ATAN, PH, DIF, DDIF, INTG, IINTG, BIN, P2, P3, F1, F2, FV, PWHH, PWHL, PWLH, PWLL, PWXX, DUTYH, DUTYL, FILT1, FILT2, HLBT, MEAN
Set the average	Simple average, exponential average, cycle average, peak computation
FFT	
Waveform to be computedCHn, CHnm, RT	
Number of windows	2
Number of FFT waveforms	
	Up to eight waveforms (up to four waveforms/window)
Computation range	From the specified computation time start point until the specified number of points have been computed
Math points	$1 \mathrm{k} / 2 \mathrm{k} / 5 \mathrm{k} / 10 \mathrm{k} / 20 \mathrm{k} / 50 \mathrm{k} / 100 \mathrm{k}$
Time window	Hanning, Hamming, FlatTop, Rectangle Exponential (/G02 option)
Average setting (/G02 option)	Domain: Time axis, frequency axis Type: Simple average, exponential average, peak computation
GO/NO-GO determination	A selected operation can be performed according to the determination condition on the acquired waveform.
Zone determination	Number of determination zones: Up to 6 Number of source waveforms: Up to 16 Combinations: AND, OR
Parameter determination	
	Number of determination parameters: Up to 16 Combinations: AND, OR
Operation after determ	ination Screen capture data saving, waveform data saving, buzzer notification, mail transmission
Zooming and searching	You can search for and then expand and display a portion of the displayed waveform.
Type	Edge: Searches by counting the number of rising and falling edges
	Logic pattern: Searches by counting the logic pattern
	Event: Searches for an event number
	Time: Searches for a date and time

History search	Searches through history waveforms for specified conditions
Zone search	Number of determination zones: Up to 4 Combinations: AND, OR
Parameter search	Number of determination parameters: Up to 4 Combinations: AND, OR

Recorder Mode Features
Waveform Acquisition and Display Record conditions Preset time recording
Records data for the specified time period from the start point
Trigger recording
Acquisition mode Memory recording
Records data based on trigger position setting
Records waveforms to internal memory

SSD recording (/ST1)
Minimum sampling

Minimum sampling interval
Depends on the number of used channels. 500 ns (when 1 CH is used), $5 \mu \mathrm{~s}$ (when 16 CH is used) minimum
Maximum number of recorded points
20 Gpoints, 50 Gpoints (/M1, /M2) (there are limitations based on the number of used channels)

Event recording	Records up to 100 events using the event input terminal
Display time range	$10 \mu \mathrm{~s}$ to $10 \mathrm{~s}(1-2-5$ steps), $20 \mathrm{~s}, 30 \mathrm{~s}, 40 \mathrm{~s}, 50 \mathrm{~s}, 60 \mathrm{~s}, 100 \mathrm{~s}$, $200 \mathrm{~s}, 300 \mathrm{~s}, 10 \mathrm{~min}$ to $60 \mathrm{~min}(10 \mathrm{~min}$ steps), $100 \mathrm{~min}, 2$ hour, 5 hour, 10 hour to 60 hour (10 hour steps), 80 hour, 100 hour, 5 day, 10 day, 20 day, 30 day, 40 day, 50 day
Zoom	One window
Display format	$1,2,3,4,5,6,8,12,16$ split displays (set for each display group) of TY display
Maximum number of displayed traces	
X-Y display	Number of windows: 2 Number of $X-Y$ traces: Up to eight traces (up to four traces/window) Select the X and Y axes from $C H n, C H n _m, ~ R T M A T H n, ~ M A T H n . ~$

Vertical and Horizontal Control Channel on/off CHn, CHn_m, RTMATHn, and MATHn can be turned on and off separately.	
Vertical axis zooming	By setting the scale using upper and lower limits
Linear scaling	Can be set to Ax+B mode or P1-P2 mode (only for voltage, stress, and frequency)
Deskewing	$\pm 1 \mu \mathrm{~s}$ (modules with sample rates at $10 \mathrm{MS} / \mathrm{s}$ or faster)

Triggering Section
Selectable trigger level range

	$0 \pm$ measurement range
Manual trigger	Using a dedicated key
Trigger source	CH , $\mathrm{CHn} _\mathrm{m}$ (specified input channel, specified bit for logic), RTMathn, external trigger, time
Trigger type	Edge, Time, OR, AND
Analysis Cursors	T-Y waveforms: Horizontal / Vertical / H\&V / Marker / Degree X-Y waveforms: Horizontal / Vertical / H\&V / Marker FFT waveforms: Marker / Peak
Measured parameters	of waveform parameters Analog waveform, Math PP, Amp, Max, Min, High, Low, Avg, Mid, Rms, Sdev, +Over, -Over Rise, Fall, Freq, Period, +Width, -Width, Duty, Pulse, Burst1, Burst2, Avg.Freq, AvgPeriod, Int1TY, Int2TY, Int1XY, Int2XY, Delay
	Logic waveform Freq, Period, Pulse, Duty, Avg.Freq, Delay
Statistical processing	Statistical items Max, Min, Avg, Sdv, Cnt
	Maximum number of cycles 64000
	Maximum measurement range 4 Gpoints (memory recording), 100 Mpoints (SSD recording)
	Cyclic statistical processing Automatically measures the waveform parameters once per cycle and performs statistical processing on the parameters

Waveform computation Operators	Basic arithmetic with coefficients, binarization, shift
Number of computations	Up to 8
Computation length	Up to 2 Mpoints (when one waveform is used), 250 kpoints (when eight waveforms are used)
User-defined math function (/G02 option)	

User-defined math function (/G02 option)
Operators
Equations can be created using the following operators
ABS, SQRT, LOG, EXP, NEG, SIN, COS, TAN, ATAN, PH, DIF, DDIF, INTG, IINTG, BIN, P2, P3, F1, F2, FV, PWHH, PWHL, PWLH, PWLL, PWXX, DUTYH, DUTYL, FILT1, FILT2, HLBT, MEAN

Set the average	None
FFT	
Waveform to be computed	CHn, MATHn
Number of windows	2
Number of FFT waveforms	Up to eight waveforms (up to four waveforms/window)
Computation range	From the specified computation time start point until the specified number of points have been computed
Math points	$1 \mathrm{k} / 2 \mathrm{k} / 5 \mathrm{k} / 10 \mathrm{k} / 20 \mathrm{k} / 50 \mathrm{k} / 100 \mathrm{k}$ Hanning, Hamming, FlatTop, Rectangle Exponential (/GO2 option)
Time window	None
Seot the average	You can search for and then expand and display a portion of the displayed waveform
Type searches by counting the number of rising and falling edges	
Logic pattern: Searches by counting the logic pattern	
Event: The instrument searches for an event number	
Time: The instrument searches for a date and time	

Real Time Math (/G03, /G05)

Math expression	Real time math using hardware
Max. number of math channels	
	16 (separate from the input channels)
Computation result storage format	
	Single-precision floating-point (32 bit)
Real time math function	
Math rate	Max. math rate: $10 \mathrm{MS} / \mathrm{s}$ or $1 \mathrm{MS} / \mathrm{s}$ for polynomials
Math type	Basic arithmetic with coefficients, Quartic polynomial, Coefficient multiplied by addition or subtraction of sources, Logic signal/analog waveform conversion, Differentiation, Integration, Common logarithm, Square root, Frequency, Period, Edge count, Demodulation of PWM signal, Torque, Rms value, Effective power, Effective power integration, Cosine, Sine, Arc tangent, Angle of rotation, Electrical angle, Knocking filter (only when the NCE option is installed), Resolver, 3 phase resolver
Math source waveforms	All input channels including sub channels. (there are limitations based on the operator)
	Math results can be specified as sources of another channel. However, you can only specify math results of channels whose numbers are smaller than the channel that you are specifying sources for.
Math delay	A uniform delay for each math operation, regardless of the number of math channels
Filter on math results	IIR low-pass filter all math results Full, cutoff frequencies $128 \mathrm{kHz}, 64 \mathrm{kHz}, 32 \mathrm{kHz}, 16 \mathrm{kHz}, 8 \mathrm{kHz}$, $4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}, 500 \mathrm{~Hz}, 250 \mathrm{~Hz}, 125 \mathrm{~Hz}, 62.5 \mathrm{~Hz})$
Vertical scale	Set based on the specified top and bottom scale values, simultaneous use of zooming using the scale knob and moving using the position knob
Digital filter	Digital filter for input channels. Math can be performed on up to 16 channels at the same time
Target input modules	```720212, 720211, 701250, 701255, 720250, 701251, 720268, 701261, 701262, 701265, 720266, 701275 701270,701271```
Filter types	Mean (moving average), Gauss, Sharp, IIR, IIR-Lowpass
Power Math (/G05)	
Math expression	Real time math using hardware
Math source channels	Voltage input channels excluding the 720221
Max. math rate	$10 \mathrm{MS} / \mathrm{s}$ (100 kS/s for power math)
Math result output channels	
	Power analysis math: Real time math RTMATH13, RTMATH14; harmonic analysis math RTMATH15, RTMATH16; fixed
Computed result	Single-precision floating-point (32 bit)
Power analysis	
Max. number of analy	Max. number of analyzable systems
Max. number of simultaneous math parameters	
	126 when one system is measured
	54×2 systems when two systems are measured
Supported wiring systems	
	Single-phase two-wire (1P2W); single-phase three-wire (1P3W); or three-phase three-wire (3P3W), Three-phase three-wire system that uses a three-voltage threecurrent method (3P3W; 3V3A); three-phase four-wire system (3P4W)

Delta math function	Three-phase three-wire (3P3W) \rightarrow three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A) Three-phase three-wire (3V3A) \rightarrow three-phase four-wire system (3P4W) (delta \rightarrow star) Three-phase four-wire system (3P4W) \rightarrow three-phase three-wire (3V3A) (star \rightarrow delta)	
Math items	Rms voltage and current of each phase, Voltage and current simple average of each phase (DC), AC voltage and current components of each phase (AC), Active power, Apparent power, Reactive power, Power factor, Current phase difference, Voltage and current frequencies, Maximum voltage and current, minimum voltage and current, Maximum power, minimum power, Integrated watthour, integrated watt-hour of each polarity (positive and negative), Integrated ampere-hour, integrated ampere-hour of each polarity (positive and negative), Apparent energy, Reactive energy, Impedance of the load circuit, Series resistance of the load circuit, Series reactance of the load circuit, Parallel resistance of the load circuit, Parallel reactance of the load circuit, Three-phase voltage unbalanced factor, Three-phase current unbalanced factor, Motor output math, Power efficiency	
Rms math system	Select true rms value or rectified mean value calibrated to the rms value	
Math sync mode	Edge: Select a signal. Computed using zero-crossings. Auto Timer: Specify the time. Computed at specified time intervals. AC: Select a signal. Computed using zero-crossings. Signal stop determined by a stop prediction function. AC+DC: Select a signal. Computed using zero-crossings. Signal stop determined by a stop prediction function. Switches to Auto Timer after stopping.	
Channel selection for edge Select a single channel from own phase voltage, own phase current, or other voltage/current		
Sync channel fiter	If sync mode is set to Edge, low-pass filter can be selected. Cutoff frequency: Select from $128 \mathrm{kHz}, 64 \mathrm{kHz}, 32 \mathrm{kHz}, 16 \mathrm{kHz}$, $8 \mathrm{kHz}, 4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}, 500 \mathrm{~Hz}, 250 \mathrm{~Hz}, 125 \mathrm{~Hz}$, and 62.5 Hz .	
Harmonic analysis Max. number of analyzable systems 1		
Max. number of analyzable frequencies Fundamental wave 1 kHz		
FFT points	512	
Supported wiring sys	Single-phase two-wire (1P2W); single-phase three-wire (1P3W); or threephase three-wire (3P3W), Three-phase three-wire system that uses a three-voltage threecurrent method (3P3W; 3V3A); three-phase four-wire system (3P4W)	
Delta math function	Three-phase three-wire (3P3W) \rightarrow three-phase three-wire system that uses a three-voltage three-current method (3P3W; 3V3A) Three-phase three-wire $(3 V 3 A) \rightarrow$ three-phase four-wire system (3P4W) (delta \rightarrow star) Three-phase four-wire system (3P4W) \rightarrow three-phase three-wire (3V3A) (star \rightarrow delta)	
Math mode	Rms analysis mode, power analysis mode	
Math items	Rms analysis mode	Rms percentage content of the 1st to 40th harmonic, Phase angles of the 1st to 40th harmonic, Total rms value, Distortion factor (IEC), Distortion factor (CSA)
	Power analysis mode	Active powers from the 1st to the 35th harmonic, Active power percentage content from the 1st to the 35th harmonic, Phase angles of the 1st to 35th harmonic, Total active powers, Total reactive powers, Total apparent powers, Power factor, 1st harmonic rms voltage, 1st harmonic rms current, 1st harmonic voltage phase angle, 1st harmonic current phase angle
Sync channel	Rms analysis mode: Analysis source channel Power analysis mode: Select one channel from voltage and current.	
Sync channel fiter	Low-pass filter can be selected Cutoff frequency: Select from $128 \mathrm{kHz}, 64 \mathrm{kHz}, 32 \mathrm{kHz}, 16 \mathrm{kHz}, 8$ $\mathrm{kHz}, 4 \mathrm{kHz}, 2 \mathrm{kHz}, 1 \mathrm{kHz}, 500 \mathrm{~Hz}, 250 \mathrm{~Hz}, 125 \mathrm{~Hz}$, and 62.5 Hz .	
Time Axis		
Time axis accuracy	$\pm 4.6 \mathrm{ppm}$	
External clock input	Clock input through the external clock input terminal	
Display		
Display	12.1-inch color TFT LCD (capacitive touch panel)	
Display format	T-Y, X-Y, FFT, harmonics (/G05)	
Display resolution	1024×768 (XGA)	
Resolution of the waveform display		
Defective pixels	3 ppm or less of the to	tal number of pixels including RGB

Saving Data		
Saving Data	Types of saved data	Measured data, analysis results, settings, screen capture
	Measured data format	Binary (.WDF), MATLAB (.MAT), text (.CSV) Maximum file size (MAT, CSV format): 2 GByte
	Data storage device	Internal storage, SD memory card, USB storage, network drive
Saving Screen Captures	Screen capture data format	
PNG, JPEG, BMP		

PC Data Streaming

Maximum sample rate Depends on the number of used channels. $2 \mathrm{MS} / \mathrm{s}$ (when 1 CH is used), $200 \mathrm{kS} / \mathrm{s}$ (when 16 channels are used) maximum (USB, Ethernet)
$10 \mathrm{MS} / \mathrm{s}$ (when 8 channels are used) (10G Ethernet)

Multi-Unit Synchronization (/C50)		
Connector type	SFP	
Ports	4 (up to four sub units can be connected to a main unit)	
Synchronization accuracy	\pm (30 ns + 1 sample) (typical value)	
Function	Start and stop from the main unit, combination trigger across units	
Maximum cable length	20 m	
Storage		
Internal storage (/ST1 option)		
	Number of drives	1
	Media type	SSD
	Available space	512 GB
SD memory card	Number of slots	1
	Maximum capacity	128 GB
	Compatible cards	SD, SDHC, and SDXC memory cards
USB storage	Compatible USB storage devices	
		Mass storage devices that comply with USB Mass Storage Class Ver. 1.1
	Available space	8 TB max. Partition format: MBR, GPT; format type: FAT16/FAT32/exFAT

USB Ports for Peripherals		
Connector type	USB type A (receptacle)	
Electrical and mechanical	USB Rev. 2.0 compliant	
Supported transfer modes	HS (High Speed; 480 Mbps), FS (Full Speed; 12 Mbps), LS (Low Speed; 1.5 Mbps)	
Compatible devices	Mass storage devices that comply with USB Mass Storage Class Ver. 1.1 104 or 109 keyboards that comply with USB HID Class Ver. 1.1 Mouse devices that comply with USB HID Class Ver. 1.1 HP Inkjet printers compatible with USB Printer Class Ver. 1.0, BrotherPocketJET printers	
Number of ports	2	
Power supply	$5 \mathrm{~V}, 500 \mathrm{~mA}$ (for each port)	
External Printer Output	Supported models	Brother Pocket JET printers, 300 dpi models HP inkjet printers, single function models For details on models, see the catalog or website
	Output format	Screen hard copy, monochrome or color (color available only with HP printers)
Auxiliary I/O Section		
External Trigger Input Terminal		
	Connector type	BNC
	Input level	TTL (0 to 5 V)
	Minimum pulse width	100 ns
	Detected edge	Rising or falling
Trigger Output Terminal	Connector type	BNC
	Output level	5 V CMOS
	Output delay time	($1.8 \mu \mathrm{~s}$ to $4.5 \mu \mathrm{~s})+1$ sample (typical value) Applies to $1 \mathrm{MS} / \mathrm{s}$ or faster modules. Depends on the installed module
	Output format Normal format	Logic: Falls when a trigger occurs and rises when a signal acquisition is completed Output hold time: 100 ns or more
	Pulse format	Logic: Transmits a pulse when a trigger occurs Pulse width: $1 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}, 500 \mathrm{~ms}$

External Clock Input Terminal		
	Connector type	BNC
	Input level	TL (0 to 5 V)
	Maximum input frequency	
		$9.5 \mathrm{MHz}, 100 \mathrm{kHz}$ (for envelope)
	Minimum pulse width	50 ns
	Detected edge	Rising
Video signal output	Connector type	D-sub 15 pin, receptacle
	Output format	Analog RGB
	Output resolution	XGA-compliant output, 1024×768 dots Approx. $60-\mathrm{Hz}$ Vsync (66 MHz dot clock frequency)
GO/NOGO Output	Connector type	Screwless terminal block
	Output level	5 VCMOS
External Start/Stop Input	Connector type	Screwless terminal block
	Input level	TLL (0 to 5 V) or contact input
Event Input	Connector type	Screwless terminal block
	Input level	$\Pi \mathrm{L}$ (0 to 5 V) or contact input
Sample clock output	Connector type	Screwless terminal block
	Output level	5 V CMOS
	Output operation	Outputs a clock signal at the specify frequency
	Frequency range	5 Hz to 200 kHz (1-2-5 steps)
COMP Output (Probe Compensation Signal Output Terminal) Output signal frequency $1 \mathrm{kHz} \pm 1 \%$		
	Output amplitude	$1 \mathrm{Vp}-\mathrm{p} \pm 10 \%$
Probe power (/P4 or /P8 option)		
	Output terminals	4 (PP4), 8 (P8)
	Output power	$\pm 12 \mathrm{~V}$
	Output current	Up to a total of 2.4 A (/P4), up to a total of 4.8 A (/P8)
GPS Interface (/C35 option)		
	Input connector	9-pin Mini DIN
	Compatible GPS unit	720940 (optional accessory)
	Function	Instrument clock synchronization Sample clock synchronization
	Synchronization accur	cy* $\pm 200 \mathrm{~ns}$ (typical value when locked to GPS signal)*
	*The figure is based on resur location with good line attained depending on when the measurement obstruction.	ults obtained when the GPS unit is installed in a sight to GPS satellites. The accuracy may not be measurement location, the location of satellites taken, the weather, and influence caused by
IRIG Interface (/C35 option)		
	Input connector	BNC
Number of input connectors		
Compatible IRIG signals		
		A006, B006, A136, B126
	Input impedance	$50 \Omega / 5 \mathrm{k} \Omega$ switchable
	Maximum input voltag	$\pm 8 \mathrm{~V}$
	Used for	Instrument clock synchronization Sample clock synchronization
	Clock sync range	$\pm 60 \mathrm{ppm}$
	Synchronization accur	cy No drift from the input signal
Computer Interface		
USB-PC Connection	Connector type USB type B (receptacle)	
	Electrical and mechanical specifications USB Rev. 3.0 compliant	
	Supported transfer modes FS (Full Speed) mode (12 Mbps), HS (High Speed) mode (480 Mbps), SS (Super Speed) mode (5 Gbps)	
	Number of ports 1	
	Supported protocols Functions as a device that conforms to one of the following two protocols. USBTMC-USB488 (USB Test and Measurement Class Ver. 1.0)* Communication commands can be used through USB. *A separate driver is required Mass Storage Class Ver.1.1 Only reading is possible from the instrument's internal storage through PC access. (Operations, such as formatting, are not possible.)	
	PC system requireme Windows8.1, Wind	

Ethernet	Connector type	RJ-45 modular jack
	Ports	1
	Electrical and mechanical specifications IEEE802.3 compliant	
	Transmission system	Ethernet (1000BASE-T/100BASE-TX/10BASE-T)
	Communication protocol	TCP/IP
	Supported services	DHCP, DNS, SNTP client, SMTP client, FTP client, FTP server, Web server, LPR, VXI-11, HiSLIP, Socket PTP slave, PTP master (/C40 option)
Time synchronization feature		
	Sync source	Supports IEEE1588-2008 (PTP v2) Supports PTP packets of Layer3 (UDP/IPv4) and Layer2 (Ethernet) Slave feature only (without the /C40 option) Slave and master features (with the /C40 option) Supports Ordinary Clock Supports E2E delay correction Supports 2-step Sync messages
	Sync targets	Instrument clock, sample clock
	Synchronization accuracy	$\pm 150 \mathrm{~ns}$ (typical value) when 1000 BASE-T is used and an Ethernet switch is not used
	Master sync clock (/C40 option)	
		Internal clock, GPS (/C35 option)
10 G Ethernet (/C60)	Connector type	SFP+
	Ports	1
	Electrical and mechanical specifications IEEE802.3 compliant	
	Transmission system	Ethernet (10GBASE-R)
	Communication protocol	TCP/IP
	Supported services	DHCP, DNS, SNTP client, SMTP client, FTP client, FTP server, Web server, Socket, VXI-11, HiSLIP

General Specifications
Standard operating conditions
Ambient temperature: $23 \pm 5^{\circ} \mathrm{C}$
Ambient humidity: 20 to 80\%RH
Supply voltage and frequency errors Within $\pm 1 \%$ of rating
After a 30 minute warm-up and after calibration

Recommended calibrati	n period 1 year
Warm-up time	At least 30 minutes
Operating environment	Temperature: $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Humidity: 20 to 85\%RH (no condensation) Altitude: 2000 m or less
Storage environment	Temperature: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ Humidity: 20 to 85% RH (no condensation)
Power supply	Rated supply voltage: 100 to 120 VAC, 220 to 240 VAC (auto switching) Permitted supply voltage range: 90 to 132 VAC, 198 to 264 VAC Rated supply frequency range: 48 Hz to 63 Hz Maximum power consumption: 280 VA Withstand voltage: 1500 VAC for 1 minute between the power supply and case Insulation resistance: $10 \mathrm{M} \Omega$ or higher at 500 VDC between the power supply and case
Installation orientation	Vertical, horizontal, tilted
External dimensions	Approx. $375 \mathrm{~mm}(\mathrm{~W}) \times 259 \mathrm{~mm}(\mathrm{H}) \times 202 \mathrm{~mm}(\mathrm{D})$, excluding the handle and protrusions
Weight	Approx. 7.5 kg (main unit only, no options)
Measurement Range and Display Range	

Measurement Range and Display Range

The measurement range of the ScopeCorder is ± 10 Ivisions (20 divisions of absolute width (span)) around V. The display range of the screen is ± 5 divisions (10 divisions of span). The following functions can be used to move the displayed waveform and display the waveform outside the display range by expanding/reducing the displayed waveform
Move the vertical position

- Set an offset voltage.
- Zoom in or out of the vertical axis (expand/reduce)

Outline Drawing

Model and suffix code

Model	Suffix codes	Description
DL950		ScopeCorder, 1 G Points memory ${ }^{1}$
Power cord	-D	UL/CSA standard and PSE compliant
	-F	VDE/Korean standard
	-R	Australian standard
	-Q	British standard
	- H	Chinese standard
	-N	Brazilian standard
	-T	Taiwanese standard
	-B	Indian standard
	-U	IEC Plug Type B
Language	- HJ	Japanese menu and panel
	-HE	English menu and panel
	-HC	Chinese menu and panel
	-HK	Korean menu and panel
	-HG	German menu and panel
	-HF	French menu and panel
	-HL	Italian menu and panel
	-HS	Spanish menu and panel
	-HR	Russian menu and panel
Option	/M1 ${ }^{2}$	Memory expansion to 4 G Points ${ }^{\text {6 }}$
	/M2 ${ }^{2}$	Memory expansion to 8 G Points ${ }^{7}$
	/ST1	Internal storage (512 GB)
	/C35	IRIG and GPS interface
	/C40	IEEE1588 Master function
	/C50	Multi-unit synchronization interface
	/C60	10 Gbps Ethernet interface
	/G02	User-defined math function
	/G03 ${ }^{3}$	Real time math function
	/G05 ${ }^{3}$	Power math function (including Real time math function)
	/P4 ${ }^{\text {4 }}$	Four probe power outputs
	/P8*4	Eight probe power outputs
	NCE	Vehicle edition

Standard Main Unit Accessories
Power cord, front cover, panel sheet, 8 slot cover panels, user's manuals ${ }^{{ }^{5}}$
*1: The main unit requires plug-in module (s). Max. 500 M Points/CH. *2,*3,*4: Only one of these can be selected. *5: The Start Guide is provided as a printed document and other manuals on a CD-ROM. *6: Max. 2 G Points/CH *7: Max. 4 G Points/CH
Binary files saved by DL950 cannot be opened by Xviewer. Please use IS8000.

Additional option license for DL950*

Model	Suffix code	Description
709831	-C40	IEEE1588 Master function
	-G02	User-defined math function
	Power math function (including Real time math function) /G03 is necessary to add /G05	
	VCE	Vehicle edition

*Separately sold license product (customer-installable).
ScopeCorder, is registered trademarks of Yokogawa Electric Corporation.
*Any company's names and product names mentioned in this document are trade names
trademarks or registered trademarks of their respective companies.
The User's Manuals of this product are provided by CD-ROM.

Plug-in module model numbers

See page 18 for details.

-NOTICE

- Before operating the product, read the user's manual thoroughly for proper and safe operation.

Yokogawa's Approach to Preserving the Global Environment

- Yokogawa's electrical products are developed and produced in facilities that have received ISO14001 approval.
- In order to protect the global environment, Yokogawa's electrical products are designed in accordance with Yokogawa's Environmentally Friendly Product Design Guidelines and Product Design Assessment Criteria.

Probes, cables, and converters ${ }^{* 8}$

Model	Product	Description ${ }^{1}$
701947	100:1 Probe	1000 V (DC+ACpeak) CAT II, 1.5 m
702902	10:1 Probe	Operating temp. range: -40 to $85^{\circ} \mathrm{C}, 2.5 \mathrm{~m}$
700929	10:1 Probe	1000 V (DC+ACpeak) CAT II, 1.5 m
701901	1:1 Safety BNC adapter lead	1000 Vrms CAT II
701904	1:1 Safety Adapter Lead	1000 Vrms CAT II, 600 Vrms CAT III
(in combination with the following)		
758928	Pinchers tip (Hook type)	1000 Vrms CAT III, 1 set each of red and black
701954	Large alligator-clip (Dolphin type)	1000 Vrms CAT III, 1 set each of red and black
758929	Alligator clip adaptor set	1000 Vrms CAT II, 1 set each of red and black
758922	Alligator clip adaptor set	300 Vrms CAT II, 1 set each of red and black
758921	Fork terminal adapter set	1000 Vrms CAT II, 1 set each of red and black
701940	Passive probe ${ }^{-2}$	Non-isolated 600 Vpk (701255) (10:1)
366926	1:1 BNC-alligator cable	Non-isolated 42 V or less, 1 m
366961	1:1 Banana-alligator cable	Non-isolated 42 V or less, 1.2 m
702915	Current probe ${ }^{-3,4}$	$0.5,5,30$ Arms, DC to 50 MHz
702916	Current probe ${ }^{3,34}$	$0.5,5,30$ Arms, DC to 120 MHz
701917	Current probe ${ }^{3,34}$	5 Arms, DC to 50 MHz
701918	Current probe ${ }^{-3,4}$	5 Arms, DC to 120 MHz
701932	Current probe ${ }^{13,4}$	30 Arms, DC to 100 MHz
701933	Current probe ${ }^{-3,4}$	30 Arms, DC to 50 MHz
701930	Current probe ${ }^{-3,4}$	$150 \mathrm{Arms}$,
701931	Current probe ${ }^{-3,4}$	500 Arms, DC to 2 MHz
720930	Clamp-on probe	AC $50 \mathrm{Arms}, 40 \mathrm{~Hz}$ to 3.5 kHz
720931	Clamp-on probe	AC $200 \mathrm{Arms}, 40 \mathrm{~Hz}$ to 3.5 kHz
701934	Probe power supply	External probe power supply (4 outputs)
701977	Differential probe ${ }^{3,34}$	7000 Vpeak, 5000 Vrms (For 701255)
701978	Differential probe ${ }^{13,4}$	1500 Vpeak, 1000 Vrms (For 701255)
701955	Bridge head (NDIS, 120Ω)	With 5 m cable
701956	Bridge head (NDIS, 350)	With 5 m cable
701957	Bridge head (DSUB, 120Ω)	Shunt-CAL with 5 m cable
701958	Bridge head (DSUB, 350)	Shunt-CAL with 5 m cable
758924	Safety BNC-banana adapter	500 Vrms CAT II
702911	Logic probe ${ }^{-5}$	8 bit, 1 m, non-Isolated, TTL level/Contact Input
702912	Logic probe ${ }^{\text {-5 }}$	8 bit, 3 m , non-Isolated, TTL level/Contact Input
700986	High-speed logic probe ${ }^{\text {-5 }}$	8 bit, non-Isolated, response speed: $1 \mu \mathrm{~s}$ (typ.)
700987	Isolation logic probe ${ }^{6}$	8 bit, each channel isolated
758917	Measurement lead set ${ }^{7}$	0.75 m , Stackable type (2 per set) Separate alligator clips are required.
758933	Measurement lead set ${ }^{7}$	1000 V/19 A/1 m length Separate alligator clips are required.
701902	Safety BNC-BNC cable (1 m)	1000 Vrms CAT II (BNC-BNC)
701903	Safety BNC-BNC cable (2 m)	1000 Vrms CAT II (BNC-BNC)
701948	Plug-on clip	For 700929 and 701947
701906	Long test clip	For 701977, 701978 and 701901
720941	Optical Transceiver Module	For multi-unit connection
720942	Optical Fiber Cord	For multi-unit connection, 3 m
701972	Soft carrying case	For DL950
720940	GPS unit	For DL950 and DL350

*1: Actual allowable voltage is the lower of the voltages specified for the main unit and cable. *2: 30 Vrms is safe when using the 701940 with an isolated type BNC input. *3: The number of current probes that can be powered from the main unit's power supply is limited.
*4: Either the probe power option of the main unit or the probe power supply (701934) is required. *5: Includes one of each of the B9879PX and B9879KX connection leads. *6: Additionally, 758917 and either the 758922 or 758929 are required for measurement. *7: Additionally, 758917 and either the 758922 or 758929 are required for measurement. ${ }^{*} 7$:
Alligator clips are required. *8: Refer to the bulletin and user's manual of each product to Alligator clips are required. * 8 : Refer to the bur
confirm the compatibility with the main unit.
This is a Class A instrument based on Emission standards EN61326-1 and EN55011, and is designed for an industrial environment.
Operation of this equipment in a residential area may cause radio interference, in which case users will be responsible for any interference which they cause.

The DL950, 720212, and 720211 use an Internal laser light source.

YMI-KS-MI-SE08
YOKOGAWA TEST \& MEASUREMENT CORPORATION
Global Sales Dept. /Phone: +81-42-690-8810 E-mail: tm@cs.jp.yokogawa.com Facsimile: +81-42-690-8826

The contents are as of February, 2021. Subject to change without notice. Copyright © 2021, Yokogawa Test \& Measurement Corporation [Ed: 01/b]

YOKOGAWA CORPORATION OF AMERICA
YOKOGAWA EUROPE B.V.
YOKOGAWA ELECTRIC KOREA CO., LTD.
YOKOGAWA ENGINEERING ASIA PTE. LTD.
YOKOGAWA INDIA LTD.
YOKOGAWA ELECTRIC CIS LTD.
YOKOGAWA AMERICA DO SUL LTDA.
YOKOGAWA MIDDLE EAST \& AFRICA B.S.C(c)

Phone: +1-800-888-6400 E-mail: tmi@us.yokogawa.com Phone: +31-88-4641429 E-mail: tmi@nl.yokogawa.com Phone: +86-21-6239-6363 E-mail: tmi@cs.cn.yokogawa.com Phone: +82-2-2628-3810 E-mail: TM1@kr.yokogawa.com Phone: +65-6241-9933 E-mail: TMI@sg.yokogawa.com Phone: +91-80-4158-6396 E-mail: tmi@in.yokogawa.com Phone: +7-495-737-7868 E-mail: info@ru.yokogawa.com Phone: +55-11-3513-1300 E-mail: eproc@br.yokogawa.com Phone: +973-17-358100 E-mail: help.ymatmi@bh.yokogawa.com Facsimile: +973-17-336100

